
Augmented Neural ODEs
Emilien Dupont, Arnaud Doucet, Yee Whye Teh

Q emilien.dupont@stats.ox.ac.uk � github.com/EmilienDupont/augmented-neural-odes

Summary

•We explore the limitations of Neural ODEs (NODEs) and show
that there are functions NODEs cannot represent.

•We introduce Augmented Neural ODEs (ANODEs) which, in ad-
dition to being more expressive models, are empirically more sta-
ble, generalize better and have a lower computational cost than
NODEs.

Neural ODE Augmented Neural ODELearned flows for NODEs (left) and ANODEs (right) mapping input points to linearly separable

features for binary classification. ANODEs learn simpler flows that are easier for the ODE solver

to compute

Neural ODEs

•Neural ODEs map inputs x into features φ(x) by solving an ODE:

dh(t)

dt
= f(h(t), t), h(0) = x (1)

where h(t) is the state of the ODE and f is a learned neural network.

•Features are defined as ODE state at time T , i.e. φ(x) = h(T ).

•The function f is learned through backpropagation.

Example in 1D

•Let g(x) be a function such that g(1) = −1 and g(−1) = 1.

•Trajectories mapping 1 to −1 and −1 to 1 must intersect (left fig-
ure).

•ODE trajectories cannot intersect =⇒ NODEs cannot represent
this function.

•When trained on g(x), NODEs map all points to 0 to minimize mean
squared error (right figure).

Trajectories mapping 1 to -1 and -1 to 1 Learned vector field with NODE

Functions Neural ODEs cannot represent

r1

r2
r3

•NODEs cannot represent a function that
classifies blue region as 1, red region as -1.

•To classify blue as 1, red as -1, need to lin-
early separate regions. In order to separate
them, trajectories must cross, which is not
possible. This example generalises to arbi-
trary number of dimensions.

Augmented Neural ODEs

•Solution: append zeros to input to augment the space on which we
learn and solve the ODE.

•Allows ODE flow to lift points into additional dimensions to avoid
trajectories intersecting each other.

Augmented ODE flow linearly separates points without trajectories crossing

Computational Cost

•During training, learned ODE flows become increasingly complex
=⇒ number of function evaluations (NFEs) required to solve the
ODE increases.

•NFEs increase much faster for NODEs than ANODEs, presumably
because ANODEs learn simpler flows.

•By learning simpler flows, ANODEs also generalize better.

NFEs and feature space for a NODE during training

Neural ODE Augmented Neural ODE

Plot of how NODEs and ANODEs map points in input space to different outputs

Image datasets

•We compare NODEs with ANODEs on MNIST, CIFAR10, SVHN
and 200 classes of 64× 64 ImageNet

•For all datasets, ANODEs are 5x faster, have lower computational
cost and generalize better

MNIST CIFAR10 ImageNet

Computational Cost

To achieve a given accuracy, ANODEs require fewer NFEs than
NODEs =⇒ ANODEs can model richer classes of functions at a
lower computational cost.

MNIST CIFAR10 SVHN

Generalization

ANODEs achieve higher test accuracies and lower losses than NODEs
on various datasets.

NODE ANODE

MNIST 96.4% ± 0.5 98.2% ± 0.1
CIFAR10 53.7% ± 0.2 60.6% ± 0.4

SVHN 81.0% ± 0.6 83.5% ± 0.5

Stability

•NODEs can become prohibitively expensive to train.

•Complex flow leads to unstable training and exploding losses.

•Augmentation consistently leads to stable training and fewer NFEs.

Loss instabilities on MNIST NFE instabilities on MNIST

mailto:emilien.dupont@stats.ox.ac.uk
https://github.com/EmilienDupont/augmented-neural-odes

